10. Aufgabenblatt: Analysis 2

Lehrkräfteweiterbildung, 13 Q, 13 R, Winter 2024/25 Dozent: Hans-Joachim von Höhne

Aufgabe 10.1 Bestimmen Sie den Wert der folgenden Integrale (falls existent).

$$\int_0^1 \frac{x}{\sqrt{4-x^2}} \, dx \,, \qquad \int_0^\infty (3x+5) \, e^{-x} \, dx$$

 $\mathbf{Aufgabe}\ \mathbf{10.2}$ Skizzieren Sie folgende Menge $D \subset I\!\!R^2$ und untersuchen Sie, ob D offen bzw. abgeschlossen ist.

$$D = \{ (x, y) \in \mathbb{R}^2 \mid (x - 2)^2 + y^2 < 1, y < 2 - x \}$$

Aufgabe 10.3 Untersuchen Sie folgende Funktion f auf Stetigkeit, partielle Differenzierbarkeit und totale Differenzierbarkeit im Punkt $\bar{a} = (0,0)$.

$$f(x,y) = \begin{cases} \frac{x^3 - xy^2}{x^2 + y^2} & \text{für } (x,y) \neq (0,0), \\ 0 & \text{für } (x,y) = (0,0). \end{cases}$$

Aufgabe 10.4 Sei $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ die Funktion

$$f(x,y) = 2x^2y - xy^3$$

Bestimmen Sie beim Punkt $\bar{a} = (1, 1)$

- 1) den Gradienten $\operatorname{grad} f(\bar{a})$,
- 2) die (affin) lineare Approximation von f,
- 3) die Richtungsableitung in Richtung $\bar{v} = (1/\sqrt{2}, 1/\sqrt{2}),$
- 4) die zur Hesse-Matrix $H=H_f(\bar{a})$ gehörende quadratische Form q_H .

 ${f Aufgabe~10.5}~{\sf Sei}~f:{I\!\!R}^{\,2}\longrightarrow{I\!\!R}~{\sf die}~{\sf Funktion}$

$$f(x,y) = 2y^3 + 3x^2 - 6xy.$$

- 1) Bestimmen Sie die stationären Punkte von f.
- 2) Untersuchen Sie, an welchen Stellen f lokale Extrema bzw. Sattelpunkte hat.

Bitte wenden!

Wichtige Aufgaben zu folgenden Themen:

Integralrechnung: 4.1, 4.2, 4.3, 4.4, 5.1, 10.1

Grenzwerte und Stetigkeit: 6.2, 6.3, 6.4

Offen, abgeschlossen: 7.2, 10.2

Differenzierbarkeit: 8.1, 8.2, 8.4, 8.5, 10.3, 10.4

Lokale Extrema: 9.1, 9.2, 10.5